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SUMMARY

A flow-condition-based interpolation finite element scheme is presented for use of triangular grids in
the solution of the incompressible Navier—Stokes equations. The method provides spatially isotropic
discretizations for low and high Reynolds number flows. Various example solutions are given to illustrate
the capabilities of the procedure. Copyright © 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

While much research has been expended on the numerical solution of the Navier—Stokes equations
and certain computational schemes are in wide use, the more effective solution of general fluid
flow problems at high Reynolds numbers still represents a major challenge, see References [1—4]
and the many references therein.

In our research we have focused on the development of the flow-condition-based interpolation
(FCBI) solution approach, which is a hybrid approach between the usual control volume and finite
element methods, drawing on the best features of these techniques. The specific aim in the FCBI
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674 H. KOHNO AND K. J. BATHE

solution approach is to reach procedures that are stable, accurate and efficient for any Reynolds
number flow, even when rather coarse meshes are used for solution. The aims of our developments
have been presented in detail in References [5—7].

In engineering practice, we endeavor to use as coarse meshes as possible for a required
accuracy. Hence, we require a numerical solution procedure that is stable and gives reasonable
solutions even when using rather coarse meshes for high Reynolds number flows. This numerical
scheme should not require any special meshing directed to obtain a solution and not require the
tuning of numerical parameters. Also, the iterations to solve the nonlinear algebraic equations
corresponding to a fluid mesh should converge fast. Once a numerical solution—maybe even
sometimes only of rough but still reasonable accuracy—has been reached, the analyst can refine
the mesh in a targeted manner and change, appropriately, the mathematical modelling assumptions
used (for example, regarding turbulence modelling).

The benefit of being able to use rather coarse meshes can be particularly pronounced in the
analysis of fluid flow structural interactions, because in such analyses, actually, a rather coarse
fluid flow mesh may well yield sufficient accuracy for the tractions on the structure [8]. Here
then, in addition to obtaining sufficient accuracy in the fluid flow prediction, the iterations used to
solve the combined nonlinear algebraic equations corresponding to the fluid flow and structural
meshes should converge fast, and in many cases some Newton—Raphson procedure is best used
with consistent Jacobian matrices [9].

The requirements that we have set for our developments within the FCBI solution approach
are [5-8, 10]:

e Stability of the numerical solution for low and high Reynolds number flows, using coarse
meshes. Reasonable accuracy of the solution.

e As the mesh is refined, stability is preserved and the accuracy of the simulation is optimally
increased.

e The analyst does not use any numerical parameters to tune the fluid flow solution.

e The nonlinear algebraic equations can be solved efficiently in iterations using a consistent
Jacobian matrix, say in the Newton—Raphson iterations (which requires that interpolations
of the variables are used).

In our earlier contributions we presented FCBI schemes for quadrilateral grids, or general
quadrilateral finite element meshes [5—7]. In practice, however, the use of triangular grids, and in
three-dimensional analyses tetrahedral element meshes, is very desirable. Namely, any domain
can be meshed with tetrahedral elements and for complicated geometries, tetrahedral element
discretizations in unstructured meshes generally need to be used.

The objective in this paper is to present developments of an FCBI scheme using triangular
grids for two-dimensional solutions of Navier—Stokes fluid flow problems. We first present the
FCBI procedure and specifically the flow-condition-based interpolations used, and then give
demonstrative solutions to illustrate the capacity of the scheme. These solutions include the use
of regular and irregular grids, with coarse and fine meshes, and for low and higher Reynolds
number flows of well-chosen test problems. We concentrate in this paper on the formulation
of the proposed discretization scheme, based on the objectives given above, and the detailed
solutions of some test problems. Although we consider in this study only steady-state conditions,
the proposed method can also be applied to time-dependent problems as is the FCBI method based
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on quadrilateral grids [8]. Of course, a full evaluation of the scheme should also include a study
of its numerical efficiency when the scheme is embedded in a complete CFD computer code.
Such study should then comprise the accuracy of the scheme, and the number of iterations used
and the numerical effort per iteration, when compared to using other CFD discretization methods,
in the solution of complex and perhaps even industrial problems. However, such comprehensive
evaluation is beyond the scope of this paper.

2. A NEW FCBI METHOD FOR THE SOLUTION OF NAVIER-STOKES
EQUATIONS

In this section, we present an FCBI method using triangular grids for the analysis of incompressible
fluid flows. We first give the mathematical model considered and then present the procedure based
on the MINI element used [9].

2.1. Governing equations and finite element formulation

We consider a two-dimensional steady-state fluid flow problem governed by the incompressible
Navier—Stokes equations. We assume that the problem is well-posed in the Hilbert spaces }J and
P. The non-dimensional governing equations in conservative form are:

Find the velocity v(x) € V' and pressure p(X) € P such that

V-v=0, xe (1)
V-(ww=—1)=0, x€Q 2)
subject to the boundary conditions
v=v, xe&, 3)
t-n=f, xe§ 4)

where Q€ R? is a domain with the boundary S :S‘UUSf(SvﬂSf =), 1 is the stress tensor
defined as

t=1v,p)=—pl+ Rie{VV—I—(Vv)T} (5)

with the identity tensor I and the Reynolds number Re, v* is the prescribed velocity on the
boundary S,, f* is the prescribed traction on the boundary Sy, and n is the unit normal vector to
the boundary.

For the finite element solution, we use a Petrov—Galerkin variational formulation with subspaces
Uy, V, and W), of V, and P;, and Q;, of P of the problem in Equations (1)—(4). The formulation
for the numerical solution is:

Findue Uy, ve V), and p € P, such that for all we W), and g € Oy

/ wV - (uv — t(u, p))dQ2=0 (6)
Q
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/qu-udQ:O (7)

The trial functions in U, and P, are the usual functions of finite element interpolations for velocity
and pressure, respectively. These are selected to satisfy the inf-sup condition of
incompressible analysis [9]. An important point is that the trial functions in V), are different
from the functions in U, and are defined using the flow conditions in order to stabilize the ad-
vection term. The weight functions in the spaces W), and Q) are step functions, which enforce
the local conservation of momentum and mass, respectively.

2.2. Using the MINI element

To establish an FCBI scheme for triangular grids that can be used to solve problems with complex
geometries, we develop a new method that possesses the basic ingredients mentioned above, i.e.
interpolations to satisfy the inf-sup condition, the use of the flow conditions in the trial functions
and step functions as weight functions. The procedure using the MINI element is detailed in this
section.

Figure 1 shows a MINI element in which the velocity is defined at four nodes, the lo-
cal node numbers 1-4, while the pressure is defined at three nodes, the local node numbers
1-3, in order to satisfy the inf—sup condition. With the use of step weight functions around
nodes, the control volumes in the spaces W), and Q, are considered as shown in Figures 2(a)
and (b), respectively. The flux is calculated with the interpolated values at the centre of the sides
of the control volumes. The velocity u and the pressure p are obtained with the trial functions in

A

3@
) O,
4
o,
C >
1 2
Figure 1. A MINI element.
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Figure 2. Control volumes and flux calculation points: (a) segment in the space Wj;
and (b) segment in the space Q.

Table I. Trial functions in U, and nodal co-ordinates.

Trial function i

¢ n
H=1-¢—n—¢/3 1 0 0
3=E¢—¢./3 2 1 0
5 =n— ¢e/3 3 0 1
B = e 4 1/3 1/3

Table II. Trial functions in P, and nodal co-ordinates.

Trial function i ¢ n
hW=1-¢—y 1 0 0
hy=¢ 2 1 0
hy = 3 0 1
U, and P;, given in Tables I and II:
u=~hlv; (8)
p=hp; )
Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:673-699
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1 (&,0) 2

Figure 3. Values used in the construction of the trial functions in V.

where v; and p; are the nodal velocity and pressure variables, respectively. The bubble function
¢, is defined as

3(1-¢&—1n) in o
$e=1 3¢ in w, (10)

35 in w;

in the three domains shown in Figure 1.

In order to reach a stable solution scheme, the velocity v in the advection term is interpolated
using the flow conditions, see Figure 3. As in the original FCBI method, the flow conditions
are evaluated on the sides of the element with an analytical solution of the one-dimensional
advection—diffusion equation. However, we consider here different interpolation functions for the
velocity components v and v that are measured, respectively, parallel and perpendicular to each
side of the three domains w;, w, and w;. The flow-condition-based interpolation is applied to the
parallel component, while linear interpolation is employed to the perpendicular component. This
improves the accuracy of the solution (see Remark 1 below). The trial functions for the parallel
component hf“ in V}, are given in Table III, and the functions for both components are attached
to the same nodal velocities used in Equation (8) as follows:

vy = hiy vy = hivy
(11)

U __ pu
UJ_—hiJ_UiJ_—hiUiJ_
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Table III. Trial functions in V}, for the velocity component parallel to the element sides.

w1 (6] w3
hy) 0 (1 =386 (1 =31 —x"
hy, (BE+3n—2)(1 —x* 0 (1 —3n)x"?
Ry (BE4 3 —2p* (1 =351 -x) 0
A 3(1—=¢—n) 3¢ 3n

12 _ eRell)zéb _ 1 23 _ eRC’;}ﬂa _ 1 31 _ eRegl(l_ﬂb) _ 1
eRef2 -1 > eReS3 —1 2 eRe§1 —1
_ =+ _¢+2n—1 ¢—n

S

T3 -1 MT3Er3—2 MT3E
(12)
Re‘fz = Rei’lz . AXlz, R€§3 :ReV23 . AX23, R€§1 ZREVN . AX31

Vo=35M+Vv2), V=3 +Vv), Vu=3(0+Wv)

AXp=X; —X), AXp3=X3—Xp, AX3 =X —X3

where Ref,, Re$; and ReS, are the element Reynolds numbers on the sides 1-2, 2-3 and 3-1,
respectively, and x; = (x;, ;) for i =1,2,3 are the nodal co-ordinates. The trial functions for the
perpendicular component AY, in V}, are obtained by replacing x**, x*! and x'? with #,, 1 — 1,
and &, respectively, and they are the same as the functions used in Equation (8). Note that the
bubble function ¢, is not changed as shown in Table III.

The proposed trial functions have the following properties:

Stability is obtained through the introduction of the flow-condition interpolation.

No artificial parameters are employed.

Compatibility between adjacent domains (i.e. @; and w; for 7, j =1,2,3) is satisfied.

The requirement 4! =1 is satisfied.

An interpolated value at a specific point does not depend on the node numbering.

The functions are always positive.

The functions are invariant to a rotation of the Cartesian co-ordinate system.

As the element Reynolds numbers become small, the trial functions in ¥}, approach the
trial functions in U,. (This is proved by substituting x'2 =2 &, x> =y, x*! 22 1 — 5, into the
functions listed in Table II1.)

Although the flow conditions are taken counterclockwise in Table III, which corresponds to the
direction in Figure 3, it is of course also possible to consider the flow conditions clockwise due
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to the following relation:

x21:1_x12’ x32:1_x23, x13:1_x31 (13)
Hence, geometrically, the trial functions in ¥, correspond to a linear interpolation between the
values at the centroid and the point on the side whose position is determined by the natural
co-ordinate (&, 7) as shown in Figure 3. The points (&,,7,), (0,%,) and (&, 0) correspond to the
intersections of the sides and the lines that connect the centroid and the interpolating positions,
and the values at these points are calculated according to the analytical solution of the advection—
diffusion equation. This can be described by the following equations:

R (S Y iR Ut Vil i
DG PP - PR
(=87 + (=)}

{(1 = x*)vy +xPv3}

e v e
=(3¢+3n-2)(1 —x23)02” + 3¢+ 3n— 2)x23v3” +3(1 = & — 1oy (14)
Eo Ly 4y —Lynn
= : {5 i)(m, Ené);}])/z} (o + (1= xwy }
{&+ (s —n)*}'?
0=y
=(1 =3 vy 4+ (1 = 3E)(1 —xvs) + 3wy (15)
_1y2 _ 1y 12
v = {(é{(fj)_z—)gn+ ;}?/2} {(1 = x)oy +x"0y}
{(& =& +n*}'?
MR
=(1=3n)(1 = x)vy 4+ (1 = 3n)x"vy + 3nvy (16)

where v}, vfi and vﬁ are the interpolated parallel components of the velocities v', v> and v* at
(&, 1) in @1, w, and s, respectively, which are described using the unit vectors as follows:

ol a23 22 .31 33 .12
VISVoe, U =Vooel, Up=vio-g (17)
with
Ax Ax Ax
eﬁ3 _ 23 , eﬁl _ 31 , e|1\2 _ 12 (18)
| Axas | [ Axz | [Ax |
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Remark 1

In the original FCBI technique proposed for quadrilateral elements [6], the flow-condition-based
interpolations were constructed using the flow conditions along opposing element sides, with an
interpolation over the element. The two sets of opposing element sides were used. However, in
the formulation of triangular elements, the flow conditions along each of three element sides need
to be considered in an equal manner to reach an isotropic element. This isotropy and in addition
a rational scheme for good predictive capability are achieved by decomposing the velocity vector
into the parallel and perpendicular components to each element side and using different trial
functions for the components (see Section 3.2 for results obtained when compared to using the
same flow-condition-based interpolations for parallel and perpendicular velocity components).
Notice that the element Reynolds number defined in Equation (12) can be rewritten in the
following form:

Refz :Revlz . AX]Z

= Rev| || Axya ||
v+
= Re—l=—L || Axp| (19)

Since the parallel components of velocities to the side 1-2, which are defined at the nodes 1
and 2, are used, the advected velocity should also be parallel to the side. Hence, in the scheme
proposed in this paper, the perpendicular component of velocity is interpolated linearly as the
element Reynolds number is considered to be infinitesimal due to Ax;; - €11 =0 where e, is
the unit vector perpendicular to the side 1-2.

Remark 2
In the Cartesian co-ordinate systems, the velocity in the domain ; and its components are written
as follows:

v =vjei’ + 0! e?
=uvje,+vle, (20)
vy =) (ef ) + 01 (P
=(3&+3n = 2)[(1 = ¥){(ef )} + (1 = na){(eT )} Tva
+(3E+3n = 2)[(1 = xP)(ef ele)y + (1 = na)(eP)u(e?), 102y
+ 3+ 30 = 2){(ef 1) + na{ (€)Y Tos
+(3E+3n = 2)[xP (e )ulef)y + nale? e, 1vs,
+3(1 = & — n)va
= 0l1xU2y + 02y U2y + 03Uy + Olax U3y + Ols sy (21)

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:673-699
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o) =0} (eP)y + oL (D),
= B3¢+ 31— (1~ )P (), + (1 - 1)) (), o
+ (3¢ 437 = D1 = )@, + (1= 1){(€), 1o,
+ (3 437~ DRP(ENER), + 1)), 1030
+ 3¢+ 30— L), + naf(€2), P 1os,

+3(1 = & —n)vgy

= U1y U2k + Oayl2y + o3y U3y + Ol4yUs3y + Usylay (22)

with

23 23
e =e xe, xe
23 23 23 23
(6” )x = e“ - €, (e|| )y :eH - €y (23)
(eP)=¢eT e, (7 y:ezf'ey

where e, and e, are the unit vectors in the x and y directions, respectively. The velocity com-
ponents v7, v3, v} and v} can also be obtained in a similar way. Note that the requirement
Yhj=1,1ie. Yoy = Xo;, = | in Equations (21) and (22), is still satisfied since (ef’), = (e%’), and
(e?)y=—(e?)s. In addition, it is readily confirmed from Equations (21) and (22) that v, and
vy, are independent of the directions of eﬁ3 and e’ as long as these unit vectors are, respectively,
parallel and perpendicular to the side 2-3. The same holds for the other components.

3. NUMERICAL EXAMPLES

In this section, the performance of the new FCBI method is evaluated using some test problems.
First, we apply the proposed scheme to the solution of an advection—diffusion problem for which
the exact analytical solution exists. Then we solve two Navier—Stokes flow problems: a lid-driven
flow in a square cavity and in a triangular cavity. The full Newton—Raphson method is used to
solve the nonlinear equations with the convergence criteria max(R,)<10~° and max(R,)<107¢
where R, = ||Av]|/||v||, R, =|Ap|/| p|. To reach the solutions for higher Reynolds numbers, we
use the converged solution of the lower Reynolds number case as initial condition.

3.1. Solution of an advection—diffusion temperature problem between parallel plates

We include the solution of this problem in order to compare our calculated results with an
analytical solution. Figure 4 shows the analytical model of the temperature problem considered
with the boundary conditions and the mesh of 30 x 30 x 2 elements used in this study (see also
Reference [7]). When a unit velocity is prescribed in the x direction over the whole domain,

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:673-699
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0.5 ‘%

0(0,y)=cos y :4'* X . 0(1,y)=0

(a) 0

—

b
0(x,-0.5)=0 ()

Figure 4. The flow problem between parallel plates and the mesh used: (a) problem
definition; and (b) regular triangular mesh.

the exact steady-state solution for the temperature 0 is

COST
H(X,y) — ﬁ(emrbx o ebJraX) (24)

with
a=1(Pe+ /P +4n?), b=1(Pe— \/Pe? +4n?) (25)

where Pe is the Péclet number.

Figures 5 and 6 show the comparison of temperature values on the centre line and on vertical
lines through the channel for Pe=10,100 and 1000. Although the calculated values deviate
slightly from the exact data near the right boundary for Pe =100 and 1000, good agreement with
the exact solutions can be seen in all cases.

3.2. Solution of driven flow in a square cavity

The capability of the scheme for Navier—Stokes flow problems is next assessed by solving the
lid-driven flow problem in a square cavity. This problem is widely used as a benchmark to
evaluate developed numerical schemes. We compare our numerical results with the solutions of
Ghia et al. [11] which are regarded as accurate.

Figures 7(a) and (b) show the geometry of the square cavity with the co-ordinate system and
the nomenclature used for the centres and representative lengths of the vortices, respectively.
The no-slip boundary condition is imposed on the left, lower and right boundaries, while a unit
velocity is prescribed on the upper boundary including the corners. In addition, zero pressure is
prescribed at the lower left corner. Three types of regular meshes and an irregular mesh are used
in the analysis for the fluid flow up to the Reynolds number 10 000. Figures 8(a)—(c) show the
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0.0 0.0 ! . . .
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(a) X (b) X
12

—8— Exact solution

021 —e— FCBI method
0.0 . . . .
0.0 0.2 04 0.6 0.8 1.0

© X

Figure 5. Comparison of temperature values on the centre line: (a) Pe=10;
(b) Pe=100; and (c) Pe=1000.

regular meshes including 40 x 40 x 2 elements, which are named Meshes 1-3, respectively, and
Figure 8(d) shows the irregular mesh named Mesh 4 that consists of 20 x 20 x 2 elements. In
Meshes 1-3, the grid points are distributed finer near the boundary according to the following
equations:

e@NYi—1) _ N
)= ————L I<i<—+1 2
x(7) 2= 1) ( i 3 + ) (26)
e@/N)N+1—i) _ | N
)=<¢1-——— 1L — +1<i< 1 2
x(7) { e —1) } (2+ i<N + ) (27)

where N is the number of elements on a side, L is the length of the side, i is the node number and
y represents the parameter for unequal division. The value of v is fixed at 2 for the three meshes.

First, the fluid flow for Re=10000 is calculated using Mesh 1, and the obtained velocity
profiles along the centre lines are shown in Figure 9. For the display of the results, we use the 7, s
co-ordinate systems along the centre lines (—1 <r,s<1) defined in Figure 7(a). As an experiment,
we also show the solution obtained if the same flow-condition-based interpolations are used for
the parallel and perpendicular components of velocity on the element sides. Although for this
high Reynolds number a finer mesh is necessary to reach agreement with the result of Ghia

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:673-699
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Figure 6. Comparison of temperature profiles on vertical lines:
(a) Pe=10; (b) Pe=100; and (c) Pe=1000.

et al. [11] (see below), the proposed approach of using different interpolations for the parallel
and perpendicular components of velocity is more effective, see also Remark 1.

The dependence of solutions on the meshes used is evaluated in Figure 10, for Meshes 1-3.
The obtained results with the three meshes for Re = 1000 are close to each other in velocity
profiles along the centre lines and agree reasonably well with those of Ghia et al. [11].

The results obtained using the unstructured grid, Mesh 4, are given in Figure 11 for the case
Re =1000. Reasonable results are obtained using this coarse and distorted mesh, which indicates
the robustness of the FCBI scheme.

Figure 12 shows the comparison of our results with those of Ghia ef al. [11] for the cases
Re=5000 and 10 000. In order to obtain more accurate results for these high Reynolds number
flows, we use a mesh based on the element distribution of Mesh 1 but with the number of elements
increased to 160 x 160 x 2. The velocity profiles along the centre lines are in good agreement
with those reported by Ghia et al. [11].

Figures 13 and 14 show the streamline patterns and vorticity contours, respectively, ob-
tained with the 160 x 160 x 2 mesh for Re = 1000, 5000 and 10 000. The vorticity is defined as
o =[(0v,/0x) — (0v,/0y)], and the contours are drawn at intervals of Aw=1.0 for a range of
—10.0<w <3.0. As the Reynolds number increases, the vorticity in the primary vortex becomes

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:673-699
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Figure 7. Square-cavity flow problem: (a) problem definition (—1<r,s<1); and (b) nomen-
clature (taken from Reference [11]).

almost constant due to the near-linearity of the velocity profiles, see Figure 12, whereas the
vorticity changes significantly near the boundary.

A comparison of some characteristic values with the results of Ghia ez al. [11] for Re =10 000 is
listed in Table I'V using the nomenclature in Figure 7(b). The vortex centres and the representative
lengths corresponding to the velocity profile in Figure 12(b) are in good agreement with those
reported by Ghia et al. [11] in which a 257 x 257 mesh is used. Note that the smallest secondary
vortex in the bottom right corner is captured with fewer elements per side than those in the mesh
used by Ghia et al.

3.3. Solution of driven flow in a triangular cavity

As a second fluid flow example, we consider the driven flow in an equilateral triangular cav-
ity. For this problem solution, triangular grids are quite natural to use. Although triangular-
cavity flows have been studied by some researchers [12,13], the flows considered were of rather
small Reynolds numbers. Here we solve small and large Reynolds number flows; the maximum
Reynolds number is 10 times larger than that reported by Ribbens et al. [12] in the same analytical
model.

Figures 15(a) and (b) show the geometry of the triangular cavity with the co-ordinate system
and the nomenclature for the vortices. As in the square-cavity flow problem, the no-slip boundary
condition is imposed on the left and right boundaries, while a unit velocity is prescribed on the
top boundary. At the bottom corner, the pressure is fixed at zero. The calculation is conducted
using two types of regular meshes named Mesh 1 and Mesh 2, for which the element patterns are,
respectively, shown in Figures 16(a) and (b), and consist of /(/ + 1) and /?/2 elements, where
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(a) (b)

(© (d)

Figure 8. (a) Mesh 1; (b) Mesh 2; (c) Mesh 3; and (d) Mesh 4.

[ is the number of elements along the top wall. In this analysis, 44310 elements (/ =210) for
Mesh 1 and 45 000 elements (/ =300) for Mesh 2 are used up to the Reynolds number 5000.
Figure 17 shows the velocity profiles in the x direction along the centre line and the y direction
along the horizontal line at y =—1 in the cavity obtained with Meshes 1 and 2 for the cases
Re=100,500 and 5000. For the display of the results, we use in this figure the r,s co-ordinate
systems (—1<r,s<1) defined in Figure 15(a). As in the square-cavity flow problem, the nearly
linear variation of the velocity and the kinks near y = 0 on the centre line and x = % on the hori-
zontal line are observed for the case Re = 5000. Since the solutions in Meshes 1 and 2 are almost
the same for these Reynolds numbers, the obtained results are not sensitive to the meshes used.
As demonstrated in Section 3.2, the present scheme provides not only stable results even with
distorted grids but also accurate results, with the accuracy of course dependent on the fineness of
the mesh. Hence, we deem it useful to give more details of our results and we list some calculated
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o) Ghiaetal. [11]
....... same interpolations

different interpolations

Figure 9. Comparison of vertical and horizontal velocity profiles along the centre lines obtained with
two different types of interpolations for Re = 10 000.

Ghiaetal. [11]
FCBI Mesh 1
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777777777 FCBI Mesh 3
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Figure 10. Comparison of vertical and horizontal velocity profiles along the centre lines obtained with
three different meshes for Re = 1000.
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Figure 11. Solutions in Mesh 4 for Re =1000: (a) velocity distribution; and (b) comparison of vertical
and horizontal velocity profiles along the centre lines.
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Figure 12. Comparison of vertical and horizontal velocity profiles along the centre lines: (a) solution
for Re =5000; and (b) solution for Re =10 000.

values in Tables V and VI, in which local maxima and minima are underlined. Noting that the
results for Meshes 1 and 2 are virtually the same, we show in Tables V and VI, respectively, the
x-velocity along the centre line obtained from Mesh 1 and the y-velocity along the horizontal
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Figure 13. Streamline patterns: (a) solution for Re =1000; (b) solution for Re = 5000;
and (c) solution for Re =10 000.

line at y=—1 from Mesh 2. Showing the results this way, we have more data points than if the
results were employed from one mesh only.

Figures 18 and 19 show the streamline patterns and vorticity contours, respectively, obtained
with Mesh 1 for Re =100, 500 and 5000. In Figure 18, we see that some vortices appear around
the primary vortex, and their number increases as the Reynolds number increases. The vorticity
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(a)

Figure 14. Vorticity contours: (a) solution for Re =1000; (b) solution for Re =5000;
and (c) solution for Re =10 000.

contours are drawn at intervals of Aw=0.5 for a range of —5.0<w<5.0. As in the square-
cavity flow, the vorticity in the primary vortex is approximately constant for Re = 5000, while
the gradient of vorticity becomes large between the vortices and near the geometric boundary.
The locations of the centres of the vortices according to the nomenclature in Figure 15(b)
are listed in Table VII. Among them, the locations in the primary vortex can be compared
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Table IV. Comparison of characteristic values for Re =10 000.

Parameter

FCBI

Ghia et al. [11]

(xc, yc)

(L1, YTLL)
(XBL1, VBL1)
(xBL2, VBL2)
(XBR1, VBRI)
(xBR2, VBR2)
(XBR3, VBR3)

(0.5127,0.5291)
(0.0682,0.9116)
(0.0530,0.1732)
(0.0305,0.0372)
(0.7777,0.0581)
(0.9326,0.0763)
(0.9958,0.0043)

(0.5117,0.5333)
(0.0703,0.9141)
(0.0586,0.1641)
(0.0156,0.0195)
(0.7656,0.0586)
(0.9336,0.0625)
(0.9961,0.0039)

Hrpi 0.1537 0.1589
VrLi 0.3241 0.3203
Hgri 0.3455 0.3438
VaL1 0.2857 0.2891
Hpro 0.0685 0.0352
VaL2 0.0896 0.0441
Hgri 0.3730 0.3906
VaRi1 0.4455 0.4492
Hgr2 0.1699 0.1706
Var2 0.1576 0.1367
Hgrs 0.0089 0.0039
VBRr3 0.0092 0.0039

+

(XcaYes) (XesYer)

(Xc2:¥e)

(X¢3:Yc3)

(b) (Xcs:Yes)

Figure 15. Triangular-cavity flow problem: (a) problem definition (—1<r,s<1); and (b) nomenclature.

with the results of Ribbens et al. [12]. Although the present results agree well with those of
Ribbens et al. [12] for the cases Re =100 and 200, we obtained somewhat different data when
Re=500. To study our results further we plot the calculated centre position of the primary
vortex as a function of the Reynolds number in Figure 20(a). This position changes smoothly
according to the development of the flow field; hence our results for Re =500 are deemed
accurate.
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(@)
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Figure 16. (a) Mesh 1; and (b) Mesh 2.
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Figure 17. Vertical and horizontal velocity profiles along the centre line (x=0) and the
horizontal line (y=—1) obtained with two different meshes: (a) solution for Re=100;
(b) solution for Re =1500; and (c) solution for Re =5000.
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Table V. Velocity values in the x direction along the centre line (x=0) in Mesh 1.

Re

Grid pt. no. y 100 200 500 1000 2000 3500 5000
211 0.0000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
207 —0.0571 0.81766 0.78999 0.73838 0.69877 0.66698 0.65422 0.65324
206 —0.0714 0.77171 0.73771 0.67965 0.64323 0.62494 0.62693 0.63440
205 —0.0857 0.72676 0.68813 0.62977 0.60396 0.60359 0.61767 0.62950
204 —0.1000 0.68320 0.64201 0.58927 0.57817 0.59334 0.61342 0.62599
180 —0.4429 0.16395 0.23983 0.28014 0.29736 0.31156 0.32091 0.32664
150 —0.8714 —0.16653 —0.10758 —0.05682 —0.03738 —0.02639 —0.02100 —0.01853
128 —1.1857 —0.29476 —0.33718 —0.26938 —0.25167 —0.24414 —0.24211 —0.24228
119 —1.3143 —-027349 -0.37775 —0.35935 —0.33325 —0.32717 —0.32540 —0.32601
106 —1.5000 —0.18897 —0.29791 —0.45972 —0.46283 —0.44226 —0.43947 —0.44103
100 —1.5857 —0.14445 —0.22425 —0.41095 —0.50351 —0.50762 —0.49468 —0.49248
96 —1.6429 —0.11669 —0.17469 —0.33494 —0.46858 —0.53285 —0.53940 —0.53784
94 —1.6714 —0.10376 —0.15138 —0.28993 —0.42548 —0.51846 —0.54890 —0.55647
93 —1.6857 —0.09758 —0.14028 —0.26698 —0.39835 —0.50133 —0.54482 —0.55919
75 —1.9429 —0.02046 —0.01231 —0.01293 —0.01328 —0.00365 0.05945 0.07701
74 —1.9571 —0.01798 —0.00880 —0.00764 —0.00778 0.00234 0.05981 0.07563
63 —2.1143  —0.00032 0.01304 0.02439 0.02956 0.04331 0.01392 0.01073
58 —2.1857 0.00312 0.01543 0.02737 0.03362 0.03606 0.00303 0.00208
57 —2.2000 0.00355 0.01553 0.02732 0.03342 0.03324 0.00153 0.00054
50 —2.3000 0.00481 0.01371 0.02277 0.02546 0.01252 —0.00605 —0.00928
1 —3.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table VI. Velocity values in the y direction along the horizontal line (y =—1.0) in Mesh 2.

Re

Grid pt. no. X 100 200 500 1000 2000 3500 5000
201 1.1547 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
195 1.0854 —0.14663 —0.20538 —0.33354 —0.45622 —0.55547 —0.60292 —0.61850
193 1.0623 —0.18510 —0.25872 —0.40554 —0.51876 —0.57957 —0.58979 —0.58657
190 1.0277 —0.23363 —0.32360 —0.47331 —0.54549 —0.54712 —0.52833 —0.52041
186 09815 —0.28188 —0.38138 —0.49887 —0.50832 —0.47690 —0.46718 —0.47034
180 09122 —0.32187 —0.41260 —0.45508 —0.42435 —0.41400 —0.42254 —0.42970
175 0.8545 —0.33011 —0.40093 —0.39707 —0.37604 —0.38205 —0.39068 —0.39628
101 0.0000 0.10458 0.09033 0.05136 0.04008 0.03387 0.03207 0.03184
60 —0.4734 0.18995 0.26513 0.28742 0.26286 0.25367 0.25191 0.25307
58 —0.4965 0.18981 0.26566 0.29968 0.27459 0.26479 0.26294 0.26407
42 —0.6813 0.17807 0.23822 0.35731 0.37510 0.35809 0.35375 0.35480
33 —0.7852 0.16183 0.20468 0.32956 0.40430 0.41568 0.41038 0.40969
27 —0.8545 0.14537 0.17678 0.28510 0.38345 0.43522 0.44616 0.44862
24 —0.8891 0.13501 0.16088 0.25700 0.35794 0.42878 0.45412 0.46214
22 —0.9122 0.12723 0.14946 0.23645 0.33563 0.41633 0.45197 0.46503
1 —1.1547 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:673-699
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Figure 18. Streamline patterns in Mesh 1: (a) solution for Re=100; (b) solution for
Re =500; and (c) solution for Re = 5000.

In Figure 20(a), as in the square-cavity flow problem, the centre of the primary vortex moves
toward the geometric centre of the cavity as the Reynolds number increases. On the contrary, the
secondary eddies under the primary vortex first appear around the cavity centre and then move
right or left with the increase in the Reynolds number as shown in Figures 20(b), (c¢) and (e).
This figure also implies that more eddies will appear near the stagnant corner at higher Reynolds
numbers; but a finer mesh need be used to capture those tiny eddies.

4. CONCLUSIONS

In this paper we presented an FCBI scheme for use with triangular grids in the solution of the
Navier—Stokes equations at low and high Reynolds numbers. The emphasis in the FCBI procedure
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(©)

Figure 19. Vorticity contours in Mesh 1: (a) solution for Re=100; (b) solution for
Re =500; and (c) solution for Re =5000.

is on stability and reasonable accuracy even when rather coarse meshes are used. In the case
of triangular discretizations, we also want that property to hold when completely unstructured
meshes are employed. This is difficult to achieve, but a reasonable research aim. The scheme
presented in the paper is spatially isotropic (which is important for general applications) and
showed good stability and accuracy in the test problems solved. Some detailed results are given
for the flow fields in a driven square-cavity problem and in a driven triangular-cavity problem.

The scheme was presented and tested for two-dimensional solutions, but in principle the given
procedure can also directly be developed for three-dimensional analyses. Of course, further studies
of the scheme, including the numerical effectiveness, for two-dimensional solutions are needed.
These studies might also result in improvements of the procedure, and for three-dimensional
solutions, the scheme needs to be still implemented, thoroughly tested and analysed. Finally, a
mathematical analysis of the given scheme would be very valuable.
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Figure 20. Variation of the vortex centre positions in Mesh 1: (a) (Xc1,¥c1); (b) (Xc2,¥e2);
(¢) (Xc3,¥c3); (d) (Xca,ycq); and (e) (Xcs,Yes)-
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